Big Data Analytics in the Age of Accelerators

Kunle Olukotun
Cadence Design Systems Professor
Stanford University

Reconfigurable Computing for the Masses, Really?
September 4, 2015
Research Goals

- Unleash full power of modern computing platforms
 - Heterogeneous parallelism

- Make parallel application development practical for the masses (Joe/Jane the programmer)
 - Parallelism is not for the average programmer
 - Too difficult to find parallelism, to debug, and get good performance

- Parallel applications without parallel programming
Modern Big Data Analytics

- Predictive Analytics ≈ Data Science

- Enable better decision making
 - Data is only as useful as the decisions it enables

- Deliver the capability to mine, search and analyze this data in real time
 - Requires the full power of modern computing platforms
Data Center Computing Platforms

- Multicore Multi-socket
- Graphics Processing Unit (GPU)
- > 1 TFLOPS
- 10s of cores
- 1000s of nodes
- Reconfigurable compute.
- Programmable Logic
- Cluster

Accelerators
Expert Parallel Programming

- MPI: Message Passing Interface
- Map Reduce
- Graphics Processing Unit (GPU)
- CUDA
- OpenCL
- Multicore
- Muti-socket
- Threads
- OpenMP
- Verilog
- VHDL
- Programmable Logic
- 10s of cores
- > 1 TFLOPS
- 1000s of nodes
- Cluster
- Reconfigurable computer

Verilog VHDL
Programmable Logic

Multicore Muti-socket

Threads OpenMP

10s of cores

> 1 TFLOPS

Graphics Processing Unit (GPU)

CUDA OpenCL

Reconfigurable computer

MPI Map Reduce

MPI: Message Passing Interface
MapReduce vs CUDA

- **MapReduce**: simplified data processing on large clusters
 - J Dean, S Ghemawat
 - *Communications of the ACM*, 2008
 - Cited by 14764

- **Scalable parallel programming with CUDA**
 - J Nickolls, I Buck, M Garland, K Skadron
 - *ACM Queue*, 2008
 - Cited by 1205
Big-Data Analytics Programming Challenge

Data Analytics Application

- Data Prep
- Data Transform
- Network Analysis
- Predictive Analytics

High-Performance Domain Specific Languages

Pthreads OpenMP
Multicore

CUDA OpenCL
GPU

MPI Map Reduce
Cluster

Verilog VHDL
FPGA
Domain Specific Languages

- Domain Specific Languages (DSLs)
 - Programming language with restricted expressiveness for a particular domain
 - High-level, usually declarative, and deterministic
High Performance DSLs for Data Analytics

Applications
- Data Transformation
- Graph Analysis
- Prediction Recommendation

Domain Specific Languages
- Data Extraction
 - OptiWrangler
- Query Proc.
 - OptiQL
- Graph Alg.
 - OptiGraph
- Machine Learning
 - OptiML

Heterogeneous Hardware
- Multicore
- GPU
- FPGA
- Cluster

Languages
- OptiQL
- OptiGraph
- OptiML

Compilers
- DSL Compiler
- DSL Compiler
- DSL Compiler
- DSL Compiler
OptiML: Overview

- Provides a familiar (MATLAB-like) language and API for writing ML applications
 - Ex. `val c = a * b` (a, b are `Matrix[Double]`)

- Implicitly parallel data structures
 - Base types
 - Subtypes
 - `TrainingSet`, `IndexVector`, `Image`, ...

- Implicitly parallel control structures
 - `sum{...}`, `(0::end) {...}`, `gradient { ... }`, `untilconverged { ... }
 - Allow anonymous functions with restricted semantics to be passed as arguments of the control structures
K-means Clustering in OptiMl

until converged (kMeans, tol) {
 val clusters = samples.groupRowsBy { sample =>
 kMeans.mapRows(mean => dist(sample, mean)).minIndex
 }
 val newKmeans = clusters.map(e => e.sum / e.length)
 newKmeans
}

- No explicit map-reduce, no key-value pairs
- No distributed data structures (e.g. RDDs)
- No annotations for hardware design
- Efficient multicore and GPU execution
- Efficient cluster implementation
- Efficient FPGA hardware
High Performance DSLs for Data Analytics with Delite

Applications
- Data Transformation
- Graph Analysis
- Prediction Recommendation

Domain Specific Languages
- Data Extraction OptiWrangler
- Query Proc. OptiQL
- Graph Alg. OptiGraph
- Machine Learning OptiML

Delite DSL Compiler Framework
- DSL Compiler
- DSL Compiler
- DSL Compiler
- DSL Compiler

Heterogeneous Hardware
- Multicore
- GPU
- FPGA
- Cluster
Delite: A Framework for High Performance DSLs

- Overall Approach: Generative Programming for “Abstraction without regret”
 - Embed compilers in Scala libraries
 - Scala does syntax and type checking
 - Use metaprogramming with LMS (type-directed staging) to build an intermediate representation (IR) of the user program
 - Optimize IR and map to multiple targets

- Goal: Make embedded DSL compilers easier to develop than stand alone DSLs
 - As easy as developing a library
Delite Overview

Key elements

- DSLs embedded in Scala
- IR created using type-directed staging
- Domain specific optimization
- General parallelism and locality optimizations
- Optimized mapping to HW targets

Parallel Patterns: Delite Ops

- Parallel execution patterns
 - Functional: Map, FlatMap, ZipWith, Reduce, Filter, GroupBy, Sort, Join, union, intersection
 - Non-functional: Foreach, ForeachReduce, Sequential
 - Set of patterns can grow over time

- Provide high-level information about data access patterns and parallelism

- DSL author maps each domain operation to the appropriate pattern
 - Delite handles parallel optimization, code generation, and execution for all DSLs

- Delite provides implementations of these patterns for multiple hardware targets
 - High-level information creates straightforward and efficient implementations
 - Multi-core, GPU, clusters and FPGA
Parallel Patterns

Most data analytic computations can be expressed as parallel patterns on collections (e.g. sets, arrays, table)

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>map</td>
<td>in map { e => e + 1 }</td>
</tr>
<tr>
<td>zipwith</td>
<td>inA zipWith(inB) { (eA,eB) => eA + eB }</td>
</tr>
<tr>
<td>foreach</td>
<td>inA foreach { e => if (e>0) inB(e) = true }</td>
</tr>
<tr>
<td>filter</td>
<td>in filter { e => e > 0}</td>
</tr>
<tr>
<td>reduce</td>
<td>in reduce { (e1,e2) => e1 + e2 }</td>
</tr>
<tr>
<td>groupby</td>
<td>in groupBy { e => e.id }</td>
</tr>
</tbody>
</table>

Other patterns: sort, intersection, union
Parallel Patterns are Universal DSL Components

<table>
<thead>
<tr>
<th>DSL</th>
<th>Parallel Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>OptiWrangler (data extraction)</td>
<td>Map, ZipWith, Reduce, Filter, Sort, GroupBy</td>
</tr>
<tr>
<td>OptiQL (query processing)</td>
<td>Map, Reduce, Filter, Sort, GroupBy, Intersection</td>
</tr>
<tr>
<td>OptiML (machine learning)</td>
<td>Map, ZipWith, Reduce, Foreach, GroupBy, Sort</td>
</tr>
<tr>
<td>OptiGraph (graph analytics)</td>
<td>Map, Reduce, Filter, GroupBy</td>
</tr>
</tbody>
</table>
Parallel Pattern Language (PPL)

- A data-parallel language that supports parallel patterns
- Example application: \(k \)-means

```scala
val clusters = samples groupBy { sample =>
  val dists = kMeans map { mean =>
    mean.zip(sample){ (a,b) => sq(a - b) } reduce { (a,b) => a + b } } 
  Range(0, dists.length) reduce { (i,j) =>
    if (dists(i) < dists(j)) i else j 
  } 
}
val newKmeans = clusters map { e =>
  val sum = e reduce { (v1,v2) => v1.zip(v2){ (a,b) => a + b } } 
  val count = e map { v => 1 } reduce { (a,b) => a + b } 
  sum map { a => a / count } }
```
Key Aspects of Delite IR

- Sea of Nodes
 - Data-flow graph
 - Explicit effects encoded as data dependencies

- Parallel Patterns (Delite Ops)
 - Sequential, Map, Reduce, Zip, Foreach, Filter, GroupBy, Sort, ForeachReduce, FlatMap
 - Skeletons that DSL authors extend

- Data Structures also in IR
 - Structs with restricted fields (scalars, arrays, structs)
 - Field access and struct instantiation is explicit and constructs IR nodes

- Multiple Views
 - Generic, Parallel, Domain-Specific
 - Can optimize at any level
Mapping Nested Parallel Patterns to GPUs

- Parallel patterns are often nested in applications
 - > 70% apps in Rodinia benchmark contain kernels with nested parallelism

- Efficiently mapping parallel patterns on GPUs becomes significantly more challenging when patterns are nested
 - Memory coalescing, divergence, dynamic allocations, ...
 - Large space of possible mappings
Mapping Nested Ops to GPUs

\[m = \text{Matrix.rand}(nR, nC) \]
\[v = m.\text{sumCols} \]
\[\text{map}(i) \quad \text{reduce}(j) \]
\[m = \text{Matrix.rand}(nR, nC) \]
\[v = m.\text{sumRows} \]

HyoukJoong Lee et. al, “Locality-Aware Mapping of Nested Parallel Patterns on GPUs,” MICRO'14
Nested Delite Ops on Rodinia Apps

- 2D mapping exposes more parallelism
- 2D mapping enables coalesced memory accesses
Heterogeneous Cluster Performance

4 node local cluster: 3.4 GB dataset
Markov State Models (MSMs)
MSMs are a powerful means of modeling the structure and dynamics of molecular systems, like proteins.
High Performance Data Analytics with Delite

Applications
- Data Transformation
- Graph Analysis
- Prediction Recommendation

Domain Specific Languages
- Data Extraction OptiWrangler
- Query Proc. OptiQL
- Graph Alg. OptiGraph
- Machine Learning OptiML

Delite DSL Framework
- DSL Compiler
 - Multicore
 - GPU
 - FPGA
 - Cluster

Heterogeneous Hardware
- ✓
- ✓
- ✓
FPGAs in the Datacenter?

- FPGAs based accelerators
 - Recent commercial interest from Baidu, Microsoft, and Intel
 - Key advantage: Performance, Performance/Watt
 - Key disadvantage: lousy programming model

- Verilog and VHDL poor match for software developers
 - High quality designs

- High level synthesis (HLS) tools with C interface
 - Medium/low quality designs
 - Need architectural knowledge to build good accelerators
 - Not enough information in compiler IR to perform access pattern and data layout optimizations
 - Cannot synthesize complex data paths with nested parallelism
Hardware Design with HLS is Easy

Add 512 integers stored in external DRAM

```c
void(int* mem){
    mem[512] = 0;
    for(int i=0; i<512; i++){
        mem[512] += mem[i];
    }
}
```

27,236 clock cycles for computation
Two-orders of magnitude too long!
High Quality Hardware Design with HLS is Still Difficult

```c
#define ChunkSize (sizeof(MPort)/sizeof(int))
#define LoopCount (512/ChunkSize)

void(MPort* mem){
    MPort buff[LoopCount];
    memcpy(buff, mem, LoopCount);  
    int sum=0;
    for(int i=1; i<LoopCount; i++){
        #pragma PIPELINE
        for(int j=0; j<ChunkSize; j++){
            #pragma UNROLL
            sum+=(int)(buff[i]>>j*sizeof(int)*8);
        }
    }
    mem[512]=sum;
}
```

Width of the DRAM controller interface

- Burst access
- Use local variable
- Special compiler directives
- Reformat code

302 clock cycles for computation
Make HLS Easier with Delite

Nithin George et. al. “Hardware system synthesis from Domain-Specific Languages,” FPL 2014

- Delite generates HLS code for each parallel pattern in the application
 - Currently targets Xilinx Vivado HLS
 - Optimizations for burst DRAM access

```java
    val result = data.sum
```

368 clock cycles for computation
Optimized Approach to HW Generation

- **Key optimizations:**
 - Parallel pattern tiling to maximize on-chip data reuse
 - *Metapipelines* to exploit nested parallelism

- **Generate MaxJ code**
 - Use Maxeler’s MaxCompiler to generate FPGA bitstream
Generalized Parallel Pattern Language (GPPL)

- Enable use of general pattern matching rules for automatic tiling
 - Polyhedral modeling limits array accesses to affine functions of loop indices
 - Pattern matching rules can be run on any input program, even those with random and data-dependent accesses

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Description</th>
<th>Application Usage Example</th>
</tr>
</thead>
</table>
| N-Dim dense | Map Generate one element per loop index, aggregates result into fixed size output collection | x.map{e => 2*e}
x.zip(y){(a,b) => a + b} |
| | MultiFold Reduce one partial result per loop index into a subsection of a fixed size accumulator | mat.map{row =>
row.fold{(a,b) => a + b}} |
| 1-Dim sparse | FlatMap Concatenates arbitrary number of elements per loop index into dynamic output collection | data.filter{e => e > 0} |
| | GroupByFold Reduce arbitrary number of partial results per loop index into buckets based on generated keys | img.histogram |
PPL Fusion of k-means

Fusion creates MultiFold

```scala
val clusters = samples groupBy { sample =>
  val dists = kMeans map { mean =>
    mean.zip(sample){ (a,b) => sq(a - b) } reduce { (a,b) => a + b }
  }
  Range(0, dists.length) reduce { (i,j) =>
    if (dists(i) < dists(j)) i else j
  }
}
val newKmeans = clusters map { e =>
  val sum = e reduce { (v1,v2) => v1.zip(v2){ (a,b) => a + b } } 
  val count = e map { v => 1 } reduce { (a,b) => a + b }
  sum map { a => a / count }
}
```
Core of k-means using GPPL

For each point in a set of n points

Get point $pt1$ from points set

For each centroid in set of k centroids

Get centroid $pt2$ from centroids set

Calculate distance between point & centroid

Take closer of current $(\text{distance}, \text{index})$ pair & previously found closest $(\text{distance}, \text{index})$

Extract index of closest centroid

At index of closest centroid, add point (with dimension d) to accumulator (non-affine access)

s = multiFold(n){i =>
 pt1 = points.slice(i, *)
 minDistWithIndex = multiFold(k){j =>
 pt2 = centroids.slice(j, *)
 dist = distance(pt1, pt2)
 (0, (dist, j))
 }{(a,b) => if (a._1 < b._1) a else b }
 minIndex = minDistWithIndex._2
 (minIndex, pt1)
 }{(a,b) => map(d){k => a(k) + b(k) }
Parallel Pattern Tiling 1

- **Strip mining**: Chunk parallel patterns into nested patterns of known size, chunk predictable array accesses with copies
 - **Copy** becomes local memory with hardware prefetching
 - Strip mined patterns enable computation reordering

<table>
<thead>
<tr>
<th>Example</th>
<th>Parallel Patterns</th>
<th>Strip Mined Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Map</td>
<td>map(d){i => 2*x(i)}</td>
<td>multiFold(d/b){ii => xTile = x.copy(b + ii) (i, map(b){i => 2*xTile(i) })}</td>
</tr>
<tr>
<td>x: Array, size d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x.map{e => 2*e}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum through matrix rows</td>
<td>multiFold(m,n){i,j => (i, mat(i,j))}</td>
<td>multiFold(m/b0,n/b1){ii, jj => matTile = mat.copy(b0+ii,b1+jj) (ii, multiFold(b0,b1){i,j => (i, matTile(i,j))} {(a,b) => a + b})}</td>
</tr>
<tr>
<td>mat: Matrix, size m x n</td>
<td>{{(a,b) => a + b}}</td>
<td>{{(a,b) => a + b}}</td>
</tr>
<tr>
<td>mat.map{row => row.fold{(a,b) => a + b}}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple data filter</td>
<td>flatMap(d){i => if (x(i) > 0) x(i) else []}</td>
<td>flatMap(d/b){ii => xTile = x.copy(b + ii) flatMap(b){i => if (xTile(i) > 0) xTile(i) else []} }</td>
</tr>
<tr>
<td>data: Array, size d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>data.filter{e => e > 0}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parallel Pattern Tiling 2

- **Pattern interchange:** Reorder nested patterns and split imperfectly nested patterns when intermediate data created is statically known to fit on chip
 - Reordering improves locality and reuse of on-chip memory
 - Reduces number of main memory reads and writes

<table>
<thead>
<tr>
<th>Example</th>
<th>Strip Mined Patterns</th>
<th>Interchanged Patterns</th>
</tr>
</thead>
</table>
| Matrix multiplication | `multiFold(m/b0,n/b1){ii, jj =>
 xTl = x.copy(b0+ii, b1+jj)
 (ii, jj), map(b0,b1){i, j =>
 multiFold(p/b2){kk =>
 yTl dy.copy(b1+jj, b2+kk)
 (0, multiFold(b2){ k =>
 (0, xTl(i, j)* yTl(j, k))
 })(a, b) => a + b})
 })(a, b) => a + b}` | `multiFold(m/b0,n/b1){ii, jj =>
 xTl = x.copy(b0+ii, b1+jj)
 (ii, jj), multiFold(p/b2){kk =>
 yTl = y.copy(b1+jj, b2+kk)
 (0, map(b0,b1){i, j =>
 (0, multiFold(b2){ k =>
 (0, xTl(i, j)* yTl(j, k))
 })(a, b) => a + b})
 })(a, b) =>
 map(b0,b1){i, j =>
 a(i, j) + b(i, j) }
 }` |
Hardware (MaxJ code) Generation

- Parallel patterns mapped to library of hardware templates
- Each template exploits one or more kinds of parallelism or memory access pattern
- Templates coded in MaxJ: Java based hardware generation language from Maxeler
Hardware Templates

<table>
<thead>
<tr>
<th>Pipe. Exec. Units</th>
<th>Description</th>
<th>IR Construct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector</td>
<td>SIMD parallelism</td>
<td>Map over scalars</td>
</tr>
<tr>
<td>Reduction tree</td>
<td>Parallel reduction of associative operations</td>
<td>MultiFold over scalars</td>
</tr>
<tr>
<td>Parallel FIFO</td>
<td>Buffer ordered outputs of dynamic size</td>
<td>FlatMap over scalars</td>
</tr>
<tr>
<td>CAM</td>
<td>Fully associative key-value store</td>
<td>GroupByFold over scalars</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memories</th>
<th>Description</th>
<th>IR Construct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer</td>
<td>Scratchpad memory</td>
<td>Statically sized array</td>
</tr>
<tr>
<td>Double buffer</td>
<td>Buffer coupling two stages in a metapipeline</td>
<td>Metapipeline</td>
</tr>
<tr>
<td>Cache</td>
<td>Tagged memory exploits locality in random accesses</td>
<td>Non-affine accesses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Controllers</th>
<th>Description</th>
<th>IR Construct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential</td>
<td>Coordinates sequential execution</td>
<td>Sequential IR node</td>
</tr>
<tr>
<td>Parallel</td>
<td>Coordinates parallel execution</td>
<td>Independent IR nodes</td>
</tr>
<tr>
<td>Metapipeline</td>
<td>Execute nested parallel patterns in a pipelined fashion</td>
<td>Outer parallel pattern with multiple inner patterns</td>
</tr>
<tr>
<td>Tile memory</td>
<td>Fetch tiles of data from off-chip memory</td>
<td>Transformer-inserted array copy</td>
</tr>
</tbody>
</table>
Metapipelining

- Hierarchical pipeline: “pipeline of pipelines”
 - Exploits nested parallelism
- Stages could be other nested patterns or combinational logic
 - Does not require iteration space to be known statically
 - Does not require complete unrolling of inner patterns
- Intermediate data from each stage stored in double buffers
 - No need for lockstep execution
Metapipeline – Simple Example

```
map(N) { r =>
  row = matrix.slice(r)
}

diff = map(D) { i =>
  row(i) - sub(i)
}

vprod = map(D,D) {(i,j)=>
  diff(i) * diff(j)
}
```

```
TileMemController Pipe1
  row
  sub
  ld
  ld
  -
  st
  Pipe2
  diff
  ld
  ld
  *
  st
  Pipe3
  vprod
  TileMemController Pipe4
```

```
TileMemController Pipe1
  row
  row
  sub
  ld
  ld
  -
  st
  Pipe2
  diff
  diff
  ld
  ld
  *
  st
  Pipe3
  vprod
  vprod
  TileMemController Pipe4
```
High quality hardware design

- Hardware similar to Hussain et al. *Adapt. HW & Syst. 2011*
 - “FPGA implementation of k-means algorithm for bioinformatics application”
 - Implements a fixed number of clusters and a small input dataset
- Tiling analysis automatically generates buffers and tile load units to handle arbitrarily sized data
- Parallelizes across centroids and vectorizes the point distance calculations
Impact of Tiling and Metapipelining

- Base design uses burst access
- Speedup with tiling alone: up to $15.5x$
- Speedup with tiling and metapipelining: up to $39.4x$
- Minimal (often negative!) impact on resource usage
 - Tiled designs have fewer off-chip data loaders and storers
Summary

- In the age of heterogeneous architectures
 - Power limited computing \Rightarrow parallelism and accelerators

- Need parallelism and acceleration for the masses
 - DSLs let programmers operate at high-levels of abstraction
 - Need one DSL for all architectures
 - Semantic information enables compiler to do coarse-grained domain-specific optimization and translation

- Need a parallelism and accelerator friendly IR
 - Parallel pattern IR structures computation and data
 - Allows aggressive parallelism and locality optimizations through transformations
 - Provides efficient mapping to heterogeneous architectures

- DSL tools for FPGAs need to be improved
 - Better performance prediction
 - More optimization
 - Shorter compile times (place and route)
Big Data Analytics
In the Age of Accelerators

- Power
- Performance
- Productivity
- Portability

Accelerators (GPU, FPGA, ...)
Parallel Patterns
High Performance DSLs (OptiML, OptiQL, ...)

- OptiML
- OptiQL
Colaborators & Funding

■ Faculty
 ■ Pat Hanrahan
 ■ Martin Odersky (EPFL)
 ■ Chris Ré
 ■ Tiark Rompf (Purdue/EPFL)

■ PhD students
 ■ Chris Aberger
 ■ Kevin Brown
 ■ Hassan Chafi
 ■ Zach DeVito
 ■ Chris De Sa
 ■ Nithin George (EPFL)
 ■ David Koeplinger

■ Funding
 ■ PPL : Oracle Labs, Nvidia, Intel, AMD, Huawei, SAP
 ■ NSF
 ■ DARPA

■ Faculty
 ■ HyoukJoong Lee
 ■ Victoria Popic
 ■ Raghu Prabhakar
 ■ Aleksander Prokopec (EPFL)
 ■ Vojin Jovanovic (EPFL)
 ■ Vera Salvisberg (EPFL)
 ■ Arvind Sujeeth
Comparing Programming Models of Recent Systems For Data ANALYTICs

<table>
<thead>
<tr>
<th>System</th>
<th>Programming Model Features</th>
<th>Supported Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rich Data Parallelism</td>
<td>Nested Prog.</td>
</tr>
<tr>
<td>MapReduce</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DryadLINQ</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Thrust</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Scala Collections</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Delite</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spark</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lime</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>PowerGraph</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dandelion</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Frameworks are listed in chronological order

Requirement: expressive programming model and support for all platforms
Distributed Heterogeneous Execution

- **Separate Memory Regions**
 - NUMA
 - Clusters
 - FPGAs

- **Partitioning Analysis**
 - Multidimensional arrays
 - Decide which data structures / parallel ops to partition across abstract memory regions

- **Nested Pattern Transformations**
 - Optimize patterns for distributed and heterogeneous architectures

Diagram:
- DSL Application
 - Delite parallel data
 - Delite parallel patterns
- Partitioning & Stencil Analysis
 - Partitioned data
 - Local data
 - Scheduled patterns
- Nested Pattern Transformations
 - Partitioned data
 - Local data
 - Scheduled, transformed patterns
- Heterogeneous Code Generation & Distributed Runtime
OptiML on Heterogeneous Cluster

4 node local cluster: 3.4 GB dataset
Multi-socket NUMA Performance

1– 48 threads
4 sockets
Parallel Pattern Language

- Implemented a data-parallel language that supports parallel patterns
- Structured computations and data structures
 - Computations: map, zipwith, foreach, filter, reduce, groupby, ...
 - Data structures: scalars, array, structs
- Example application: PageRank

```plaintext
Graph.nodes map { n =>
  nbrsWeights = n.nbrs map { w =>
    getPrevPageRank(w) / w.degree
  }
  sumWeights = nbrsWeights reduce { (a,b) => a + b }
  ((1 - damp) / numNodes + damp * sumWeights
```

PageRank